Exploring the conduction in atomic-sized metallic constrictions created by controlled ion etching.
نویسندگان
چکیده
A novel technique to establish atomic-sized contacts in metallic materials is shown. It is based on etching a (sub)micrometric electrode via a low-energy focused ion beam. The in situ measurements of the nanoconstriction resistance during the etching process permit control of the formation of atomic-sized constrictions with milling time, observing steps in the conductance in the range of the conductance quantum (G(0) = 2e(2)/h), just before entering the tunnelling regime. These constrictions are highly stable with time due to the adherence to a substrate, which allows further studies such as the detailed current-voltage transport investigation reported here. Scanning electron microscopy images are used to correlate the etching process and the constriction microstructure. The high control achieved in the process makes us suggest this technique as a promising route to study physical phenomena in the verge of the metal-tunnel conduction crossover.
منابع مشابه
Optimization of Electrochemical Etching Parameters in FIM/STM Tungsten Nanotip Fabrication
Field Ion Microscopy (FIM) and Scanning Tunneling Microscopy (STM) have found a wide application in nanotechnology. These microscopes use a metallic nanotip for image acquisition. Resolution of FIM and STM images depends largely on the radius of nanotip apex; the smaller the radius the higher the resolution. In this research, for tungsten nanotip fabrication, electrochemical etching of tungsten...
متن کاملDetermination of metallic impurities in a silicon wafer by local etching and electrothermal atomic absorption spectrometry.
An etching technique for the determination of the metallic impurities distribution in silicon wafers has been developed. An area of 10 mmphi and 10 microm depth was etched by 100 microL of an etching solution with a HF and HNO3 mixture. The acid matrix was evaporated on the wafer surface by IR lamp illumination and vacuum exhaust. Metallic impurities remaining on the wafer surface were redissol...
متن کاملFabrication of Copper and Iron Nano/Micro Structures on Semiconducting Substrate and Their Electrical Characterization
In this paper, we have studied the electrical properties of the randomly distributed metallic (Co and Fe) nano/ micro wires on Silicon substrate. Deposition was carried out potentiostatically into the pores of the track-etch polycarbonate membrane spin coated onto the Si substrate. Spin coated films were irradiated with 150MeV Ni (+11) ions at a fluence of 8E7 ions/cm2, followed by UV irradiati...
متن کاملReactive ion etching of quartz and Pyrex for microelectronic applications
The reactive ion etching of quartz and Pyrex substrates was carried out using CF4 /Ar and CF4 /O2 gas mixtures in a combined radio frequency ~rf!/microwave ~mw! plasma. It was observed that the etch rate and the surface morphology of the etched regions depended on the gas mixture ~CF4 /Ar or CF4 /O2), the relative concentration of CF4 in the gas mixture, the rf power ~and the associated self-in...
متن کاملControllable doping and wrap-around contacts to electrolessly etched silicon nanowire arrays.
Top-down electroless chemical etching enables non-lithographic patterning of wafer-scale nanostructured arrays, but the etching on highly doped wafers produces porous structures. The lack of defect-free nanostructures at desired doping and the difficulties in forming reliable electrical side-contacts to the nanostructure arrays limits their integration into high performance nanoelectronics. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanotechnology
دوره 19 41 شماره
صفحات -
تاریخ انتشار 2008